Transistors is a 2 part network.Input and Output of a transistor are related through 2 equation
V1=h11I1+h12V2
I2=h21I1+h22V2
V1I1|V2=0 derived point impedance when output is short circuited hi,hie,hibhic
V1V2|I1=0 Reverse transfer voltage ratio when input is open circuit
hr,hre,hrbhrc
I2I1|V2=0 forward current ratio when output is short circuited hf,hfe,hfbhfc
I2V2|I1=0 driving point output admittance when input is open circuit ho,hoe,hobhoc
For CE
Vb=hieIb+hreVc
Ic=hfeIb+hoeVc
For CC
Vb=hicIb+hrcVe
Ie=hfcIb+hocVe
For CB
Ve=hibIe+hrbVc
Ic=hfbIe+hobVc
Analysis (using without considering source)
Current Gain
Ai=ILII=−I2I1
I2=hfI1+hoV2
=hfI1+hoILRL
I2=hfI1−hoILRL
I2(1+h+oRL)=hfI1
I2I1=hf1+hoRL
AI=−I2I1=−hf1+hoRL
cc
AI=−hfc1+hocRL
ce
AI=−hfe1+hoeRL
cb
AI=−hfb1+hobRL
2)InputResistance(Ri)
Ri=v1I1
V1=hiI1+hrV2
V1=hiI1−hrI2RL
V1I1=hi−hrI2RLI1
\bbox[5px,border:2px solid red] { R_i=h_i+h_rA_IR_L }
ce
R_i=h_{ie}+h_{re}A_IR_L
cc
R_i=h_{ic}+h_{rc}A_IR_L
cb
R_i=h_{ib}+h_{rb}A_IR_L
3) Voltage Gain (A_v)
A_v=\frac{V_2}{V_1}
V_2=-I_2R_L
A_I=\frac{-I_2}{I_1}
-I_2={A_II_1}
=> V_2=A_II_1R_L
A_v=\frac{V_2}{V_1}=\frac{A_II_1R_L}{V_1}=\frac{A_IR_L}{R_i}
\bbox[5px,border:2px solid red] { A_v=\frac{A_II_1R_L}{V_1}=\frac{A_IR_L}{R_i} }
4 ) Output Resistance(R_o)
R_o=\frac{V_2}{I_2}
I_2= h_fI_1+h_oV_2
\frac{I_2}{V_2} = \frac{h_fI_1}{V_2}+h_o
Y_o= \frac{h_fI_1}{V_2}+h_o
when V_s=0
(R_s+h_i)I_1+h_rV_2=0
\frac{I_1}{V_2}=\frac{-h_r}{h_i+R_s}
Y_o= \frac{-h_fh_r}{h_i+R_s}+h_o
Y_o= h_o-\frac{h_fh_r}{h_i+R_s}
R_o=\frac{1}{Y_o}
Power Gain
A_p=A_vA_I
Analysis (using with considering source)
Voltage gain
A_{vs}=\frac{V_2}{V_s}=\frac{V_2}{V_1}\frac{V_1}{V_s}
A_{vs}=A_v\frac{V_1}{V_s}
V_1=\frac{V_sR_i}{R_i+R_s}
=> \frac{V_1}{V_s}=\frac{R_i}{R_i+R_s}
\bbox[5px,border:2px solid red]{ A_{vs}=\frac{A_vR_i}{R_i+R_s}}
Current Gain
A_{is}=\frac {I_L}{I_s}=\frac {-I_2}{I_s}=\frac {-I_2}{I_1}\frac {I_1}{I_s}
A_{is}=A_I\frac {I_1}{I_s}
I_1=I_s\frac {R_s}{R_s+R_L}
\frac {I_1}{I_s} = \frac {R_s}{R_s+R_L}
\bbox[5px,border:2px solid red]{ A_{is} = A_I \frac {R_s}{R_s+R_L} }