Common gain
Current gain or current amplification factor is defined by the ratio of output current to input current when output voltage is kept constant
CB Configuration
\( \left. α=\frac{ΔI_{C}}{ΔI_{E}} \right |_{V_{CB}=constant } \)
CE Configuration
\( \left. β=\frac{ΔI_{C}}{ΔI_{B}} \right |_{V_{CE}=constant } \)
CC Configuration
MathJax example
Current gain or current amplification factor is defined by the ratio of output current to input current when output voltage is kept constant
CB Configuration
\( \left. α=\frac{ΔI_{C}}{ΔI_{E}} \right |_{V_{CB}=constant } \)
CE Configuration
\( \left. β=\frac{ΔI_{C}}{ΔI_{B}} \right |_{V_{CE}=constant } \)
CC Configuration
\( \left. γ=\frac{ΔI_{E}}{ΔI_{B}} \right |_{V_{CE}=constant } \)
Relation between alpha α beta β gamma γ
We know that
\(I_E=I_B+I_C\)→1
dividing it by \(I_C\) gives
\(\frac{I_E}{I_C}=\frac{I_B}{I_C}+\frac{I_C}{I_C}\)
\(\frac{1}{α }=\frac{1}{β }+\frac{1}{1}=\frac{1}{β }+1\)
\(α =\frac{β}{β+1 }\)
\(\frac{1}{α }=\frac{1}{β }+\frac{1}{1}=\frac{1}{β }+1\)
\(α =\frac{β}{β+1 }\)
\(\frac{1}{β }=\frac{1}{α }-1\)
\(\frac{1}{β }=\frac{1-α}{α }\)
\(β =\frac{α }{1-α}\)
\(\frac{1}{β }=\frac{1-α}{α }\)
\(β =\frac{α }{1-α}\)
dividing it by \(I_B\) gives
\(\frac{I_E}{I_B}=\frac{I_B}{I_B}+\frac{I_C}{I_B}\)
\(γ=1+β\)
\(β=γ-1\)
\(γ=1+β\)
\(β=γ-1\)
No comments:
Post a Comment