RC phase shift oscillator
In this case the CE amplifiers is followed by a frequency determining network ,\(R_1,R_2\) combination provides dc potential divides bias and \( R-E,C_E\) provides temperature stability and provids AC signal degeneration RC-RC-RC network may be used as positive feedback between input and output.The frequency determining network provides 180° ie each RC produces 60°,amplifier produces another 180° phase shift.thus the total phase shift is 180+180=360° and satisfy the bark criterion ,.When \(V_CC\) is applied ,the current through \(R_L\) increases beacuase of biasing .this change capacitor C an induces voltages across \(R_1\)
Advantages
1) not bulky and expensive
2) pure sine wave output
Disadvantages
1) suited for low frequency
Replacing transistor by its approximate small signal model
writing loop equations
loop 1
\(ßI_3R_L+I_1R_L+\frac{I_1}{jωc}+(I_1-I_2)R=0\)$$$$
$$ \bbox[5px,border:2px solid black]{
+I_1(R_L+\frac{1}{jωc}+R)-I_2R+ßI_3R_L=0}$$
Loop 2
\((I_2-I_1)R+\frac{I_2}{jωc}+(I_2-I_3)R=0\)
\(-I_1R+I_2(R+\frac{1}{jωc}+R)-I_3R=0\)
$$ \bbox[5px,border:2px solid black]{
-I_1R+I_2(\frac{1}{jωc}+2R)-I_3R=0}$$
loop 3
\((I_3-I_2)R+\frac{I_3}{jωc}+I_3R=0\)
\(-I_1R+I_2(R+\frac{1}{jωc}+R)-I_3R=0\)
\(-I_2R+I_3(R+\frac{1}{jωc}+R)=0\)
$$ \bbox[5px,border:2px solid black]{
0-I_2R+I_3(\frac{1}{jωc}+2R)=0
}$$
this can be put in determinent form by
\(\left[\begin{array}{ccc}
(R_L+\frac{1}{jωc}+R)&-R&ßR_L\\
-R&(\frac{1}{jωc}+2R)&-R\\
0&-R&(\frac{1}{jωc}+2R)
\end{array}\right]\left[\begin{array}{ccc}
I_1\\
I_2\\
I_3
\end{array}\right]=0\)
loop current \( I_1, I_2,I_3\) cannot be zero
\(\left[\begin{array}{ccc}
(R_L+\frac{1}{jωc}+R)&-R&ßR_L\\
-R&(\frac{1}{jωc}+2R)&-R\\
0&-R&(\frac{1}{jωc}+2R)
\end{array}\right]=0\)
=>
\((R_L+\frac{1}{jωc}+R)\left[(\frac{1}{jωc}+2R)^2-R^2 \right]+R\left[-R(\frac{1}{jωc}+2R)+0 \right]+ßR_LR^2=0 \)
\((R_L+\frac{1}{jωc}+R)\left[\frac{1}{j^2ω^2c^2}+4R\frac{1}{jωc} +4R^2-R^2 \right]-\frac{R^2}{jωc}-2R^3+ßR_LR^2=0 \)
-------------------------------------------------------------
\((R_L+\frac{1}{jωc}+R)\left[\frac{1}{j^2ω^2c^2}+4R\frac{1}{jωc} +3R^2 \right]-\frac{R^2}{jωc}-2R^3+ßR_LR^2=0 \)
\( -\frac{R_L}{ω^2c^2}+4R\frac{R_L}{jωc} +3R^2R_L-\frac{1}{jω^3c^3}-4R\frac{1}{ω^2c^2} +3R^2\frac{1}{jωc}-\frac{R}{ω^2c^2}+4R^2\frac{1}{jωc} +3R^3-\frac{R^2}{jωc}-2R^3+ßR_LR^2=0 \)
\( ßR_LR^2+3R^2R_L +3R^3-2R^3+4R\frac{R_L}{jωc}+3R^2\frac{1}{jωc}+4R^2\frac{1}{jωc}-
\frac{R^2}{jωc}-\frac{R_L}{ω^2c^2}-4R\frac{1}{ω^2c^2} -\frac{R}{ω^2c^2} -\frac{1}{jω^3c^3}=0 \)
\( ßR_LR^2+3R^2R_L +R^3+\frac{4RR_L+3R^2+4R^2-R^2}{jωc}+\frac{-R_L-4R-R}{ω^2c^2} -\frac{1}{jω^3c^3}=0 \)
\( ßR_LR^2+3R^2R_L +R^3+\frac{4RR_L+6R^2}{jωc}-\frac{(R_L+5R)}{ω^2c^2} -\frac{1}{jω^3c^3}=0 \)
$$ \bbox[5px,border:2px solid red]{
ßR_LR^2+3R^2R_L +R^3+\frac{4RR_L+6R^2}{jωc}-\frac{(R_L+5R)}{ω^2c^2} -\frac{1}{jω^3c^3}=0
}$$
to make total phase shift around loop zero
Equating imaginary part to zero
\( \frac{4RR_L+6R^2}{jωc}-\frac{1}{jω^3c^3}=0 \)
\( \frac{4RR_L+6R^2}{jωc}=\frac{1}{jω^3c^3} \)
\( 4RR_L+6R^2=\frac{1}{ω^2c^2} \)
\( \frac{1}{4RR_L+6R^2}=ω^2c^2\)
\( ωc=\sqrt{\frac{1}{4RR_L+6R^2}}\)
\( 2πfc=\sqrt{\frac{1}{4RR_L+6R^2}}\)
$$ \bbox[5px,border:2px solid black]{
f=\frac{1}{2πc\sqrt{4RR_L+6R^2}}}$$
is the expression for frequency of oscillation
Equating real part
\( ßR_LR^2+3R^2R_L +R^3-\frac{(R_L+5R)}{ω^2c^2} =0 \)
here we have→
\(ω^2c^2=\frac{1}{4RR_L+6R^2}\)
\( ßR_LR^2+3R^2R_L +R^3-(R_L+5R)(4RR_L+6R^2) =0 \)
\( ßR_LR^2+3R^2R_L +R^3-4RR_L^2-20R^2R_L-6R_LR^2-30R^3 =0 \)
\( ßR_LR^2 +R^3-30R^3-4RR_L^2-20R^2R_L-6R_LR^2+3R^2R_L =0 \)
\( ßR_LR^2 -29R^3-4RR_L^2-23R^2R_L =0 \)
\( ßR_LR^2 =29R^3-4RR_L^2+23R^2R_L \)
\( ß =\frac{29R^3}{R_LR^2}+\frac{4RR_L^2}{R_LR^2}+\frac{23R^2R_L}{R_LR^2} \)
\( ß =\frac{29R}{R_L}+\frac{4R_L}{R}+23 \)
\( ß =\frac{29R}{R_L}+\frac{4R_L}{R}+23 \)
$$ \bbox[5px,border:2px solid black]{
let k=\frac{R_L}{R} }$$
\( ß =\frac{29}{k}+4k+23 \)
the min value of k is obtained by differentiating with respect to k
\(\frac{dß}{dk}=4-\frac{29}{k^2}\)
Equating to zero
\(4-\frac{29}{k^2}=0\)
\(4=\frac{29}{k^2}\)
\(k=\sqrt{\frac{29}{4}}=2.69\)
The min value of ß required by the transistor can be obtained by
\( ß =\frac{29}{2.69}+4*2.69+23 \)
\( ß =44.5 \)
The phase sift oscillator using BJT will not oscillate if transmitter is chosen whose ß<44.5
MathJax example
In this case the CE amplifiers is followed by a frequency determining network ,\(R_1,R_2\) combination provides dc potential divides bias and \( R-E,C_E\) provides temperature stability and provids AC signal degeneration RC-RC-RC network may be used as positive feedback between input and output.The frequency determining network provides 180° ie each RC produces 60°,amplifier produces another 180° phase shift.thus the total phase shift is 180+180=360° and satisfy the bark criterion ,.When \(V_CC\) is applied ,the current through \(R_L\) increases beacuase of biasing .this change capacitor C an induces voltages across \(R_1\)
Advantages
1) not bulky and expensive
2) pure sine wave output
Disadvantages
1) suited for low frequency
Replacing transistor by its approximate small signal model
writing loop equations
loop 1
\(ßI_3R_L+I_1R_L+\frac{I_1}{jωc}+(I_1-I_2)R=0\)$$$$
$$ \bbox[5px,border:2px solid black]{
+I_1(R_L+\frac{1}{jωc}+R)-I_2R+ßI_3R_L=0}$$
Loop 2
\((I_2-I_1)R+\frac{I_2}{jωc}+(I_2-I_3)R=0\)
\(-I_1R+I_2(R+\frac{1}{jωc}+R)-I_3R=0\)
$$ \bbox[5px,border:2px solid black]{
-I_1R+I_2(\frac{1}{jωc}+2R)-I_3R=0}$$
loop 3
\((I_3-I_2)R+\frac{I_3}{jωc}+I_3R=0\)
\(-I_1R+I_2(R+\frac{1}{jωc}+R)-I_3R=0\)
\(-I_2R+I_3(R+\frac{1}{jωc}+R)=0\)
$$ \bbox[5px,border:2px solid black]{
0-I_2R+I_3(\frac{1}{jωc}+2R)=0
}$$
this can be put in determinent form by
\(\left[\begin{array}{ccc}
(R_L+\frac{1}{jωc}+R)&-R&ßR_L\\
-R&(\frac{1}{jωc}+2R)&-R\\
0&-R&(\frac{1}{jωc}+2R)
\end{array}\right]\left[\begin{array}{ccc}
I_1\\
I_2\\
I_3
\end{array}\right]=0\)
loop current \( I_1, I_2,I_3\) cannot be zero
\(\left[\begin{array}{ccc}
(R_L+\frac{1}{jωc}+R)&-R&ßR_L\\
-R&(\frac{1}{jωc}+2R)&-R\\
0&-R&(\frac{1}{jωc}+2R)
\end{array}\right]=0\)
=>
\((R_L+\frac{1}{jωc}+R)\left[(\frac{1}{jωc}+2R)^2-R^2 \right]+R\left[-R(\frac{1}{jωc}+2R)+0 \right]+ßR_LR^2=0 \)
\((R_L+\frac{1}{jωc}+R)\left[\frac{1}{j^2ω^2c^2}+4R\frac{1}{jωc} +4R^2-R^2 \right]-\frac{R^2}{jωc}-2R^3+ßR_LR^2=0 \)
-------------------------------------------------------------
\((R_L+\frac{1}{jωc}+R)\left[\frac{1}{j^2ω^2c^2}+4R\frac{1}{jωc} +3R^2 \right]-\frac{R^2}{jωc}-2R^3+ßR_LR^2=0 \)
\( -\frac{R_L}{ω^2c^2}+4R\frac{R_L}{jωc} +3R^2R_L-\frac{1}{jω^3c^3}-4R\frac{1}{ω^2c^2} +3R^2\frac{1}{jωc}-\frac{R}{ω^2c^2}+4R^2\frac{1}{jωc} +3R^3-\frac{R^2}{jωc}-2R^3+ßR_LR^2=0 \)
\( ßR_LR^2+3R^2R_L +3R^3-2R^3+4R\frac{R_L}{jωc}+3R^2\frac{1}{jωc}+4R^2\frac{1}{jωc}-
\frac{R^2}{jωc}-\frac{R_L}{ω^2c^2}-4R\frac{1}{ω^2c^2} -\frac{R}{ω^2c^2} -\frac{1}{jω^3c^3}=0 \)
\( ßR_LR^2+3R^2R_L +R^3+\frac{4RR_L+3R^2+4R^2-R^2}{jωc}+\frac{-R_L-4R-R}{ω^2c^2} -\frac{1}{jω^3c^3}=0 \)
\( ßR_LR^2+3R^2R_L +R^3+\frac{4RR_L+6R^2}{jωc}-\frac{(R_L+5R)}{ω^2c^2} -\frac{1}{jω^3c^3}=0 \)
$$ \bbox[5px,border:2px solid red]{
ßR_LR^2+3R^2R_L +R^3+\frac{4RR_L+6R^2}{jωc}-\frac{(R_L+5R)}{ω^2c^2} -\frac{1}{jω^3c^3}=0
}$$
to make total phase shift around loop zero
Equating imaginary part to zero
\( \frac{4RR_L+6R^2}{jωc}-\frac{1}{jω^3c^3}=0 \)
\( \frac{4RR_L+6R^2}{jωc}=\frac{1}{jω^3c^3} \)
\( 4RR_L+6R^2=\frac{1}{ω^2c^2} \)
\( \frac{1}{4RR_L+6R^2}=ω^2c^2\)
\( ωc=\sqrt{\frac{1}{4RR_L+6R^2}}\)
\( 2πfc=\sqrt{\frac{1}{4RR_L+6R^2}}\)
$$ \bbox[5px,border:2px solid black]{
f=\frac{1}{2πc\sqrt{4RR_L+6R^2}}}$$
is the expression for frequency of oscillation
Equating real part
\( ßR_LR^2+3R^2R_L +R^3-\frac{(R_L+5R)}{ω^2c^2} =0 \)
here we have→
\(ω^2c^2=\frac{1}{4RR_L+6R^2}\)
\( ßR_LR^2+3R^2R_L +R^3-(R_L+5R)(4RR_L+6R^2) =0 \)
\( ßR_LR^2+3R^2R_L +R^3-4RR_L^2-20R^2R_L-6R_LR^2-30R^3 =0 \)
\( ßR_LR^2 +R^3-30R^3-4RR_L^2-20R^2R_L-6R_LR^2+3R^2R_L =0 \)
\( ßR_LR^2 -29R^3-4RR_L^2-23R^2R_L =0 \)
\( ßR_LR^2 =29R^3-4RR_L^2+23R^2R_L \)
\( ß =\frac{29R^3}{R_LR^2}+\frac{4RR_L^2}{R_LR^2}+\frac{23R^2R_L}{R_LR^2} \)
\( ß =\frac{29R}{R_L}+\frac{4R_L}{R}+23 \)
\( ß =\frac{29R}{R_L}+\frac{4R_L}{R}+23 \)
$$ \bbox[5px,border:2px solid black]{
let k=\frac{R_L}{R} }$$
\( ß =\frac{29}{k}+4k+23 \)
the min value of k is obtained by differentiating with respect to k
\(\frac{dß}{dk}=4-\frac{29}{k^2}\)
Equating to zero
\(4-\frac{29}{k^2}=0\)
\(4=\frac{29}{k^2}\)
\(k=\sqrt{\frac{29}{4}}=2.69\)
The min value of ß required by the transistor can be obtained by
\( ß =\frac{29}{2.69}+4*2.69+23 \)
\( ß =44.5 \)
The phase sift oscillator using BJT will not oscillate if transmitter is chosen whose ß<44.5
No comments:
Post a Comment